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Genetic and gene expression studies, in humans and animal

models of psychiatric and othermedical disorders, are becoming

increasingly integrated. Particularly for genomics, the conver-

gence and integration of data across species, experimental

modalities and technical platforms is providing a fit-to-disease

wayof extracting reproducible andbiologically important signal,

in contrast to the fit-to-cohort effect and limited reproducibility

of human genetic analyses alone. With the advent of whole-

genome sequencing and the realization that a major portion

of the non-coding genome may contain regulatory variants,

Convergent Functional Genomics (CFG) approaches are going

to be essential to identify disease-relevant signal from the

tremendous polymorphic variation present in the general

population. Such work in psychiatry can provide an example

of how to address other genetically complex disorders, and

in turn will benefit by incorporating concepts from other areas,

such as cancer, cardiovascular diseases, and diabetes. � 2013Wiley

Periodicals, Inc.
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INTRODUCTION

“Coming together is a beginning;

keeping together is progress;

working together is success”.

-Henry Ford

Psychiatric disorders are phenotypically and biologically

complex, heterogeneous, overlapping, and interdependent

[Niculescu, 2006;Niculescu et al., 2006;Niculescu andLe-Niculescu,

2010a]. Unraveling their genetic basis by human genetic studies

has proven arduous. The combination of complex genetics with

imprecise clinical nosology, relying on patient self-report rather

than on objective laboratory tests, has made this one of the difficult

challenges in science. Given that the rewards of a better under-

standing range from alleviating mental illness and suffering to

improved brain performance and understanding how the mind

works, the prize is commensurate with the degree of difficulty.
2013 Wiley Periodicals, Inc.
Technical and analytical breakthroughs give reason for optimism.

I will focus in this review paper on the high yield of integrating

genetic and gene expression studies, from humans and animal

models, usingConvergentFunctionalGenomics inbipolardisorder

as an example [Niculescu et al., 2000; Ogden et al., 2004;

Le-Niculescu et al., 2008, 2009a; McGrath et al., 2009; Patel

et al., 2010]. Similar progress has been made in schizophrenia

[Ayalew et al., 2012], anxiety disorders [Le-Niculescu et al., 2011a],

and alcohol abuse [Rodd et al., 2007]. Advances in phenotyping

(phenomics) [Niculescu et al., 2006], and practical outcomes in

terms of blood biomarker tests [Le-Niculescu et al., 2009b; Kurian

et al., 2011], gohand inhandwith such research. It is becoming clear

fromall this work that genes are shared across disorders, if one takes

a DSM view, or that they combine in various ways to give different

phenotypes, if one takes a more biological view.
1
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Animal Models

Animal models are developed and used for two main reasons: a

better understanding of the disorder (including at a gene expression

level), and the testing of new drugs. Animal models of bipolar

disorder can broadly be classified into genetic and environmentally

induced. We will confine our discussion to rodent models, which

aremuchmore experimentally tractable andwidely used than those

of other species (Table I). The genetic models arise from naturally

occurring or inbred strains, or more often from transgenic manip-

ulation (genetic engineering) of candidate genes hypothesized to be

involved in bipolar disorder. For the environmentally induced

models, pharmacological manipulation and different stress-related

paradigms are used to mimic different aspects of bipolar disorder.

Usually, the animal model recapitulates features of one or the

other of the two antithetical phases of the illness—mania versus

depression, with the sole exception to date of the DBP KO mouse

model [Le-Niculescu et al., 2008]. It is important to note that while

there is a nosological distinction between depression and bipolar

disorder, the genetics, biology, and clinical symptomatology in-

volved are likely part of a continuum–spectrum [Akiskal, 2007;

Niculescu et al., 2010].
TABLE I. Animal Models for Bipolar D

Genetically engineered Naturally occurring/inbred strain

DBP [Le-Niculescu et al., 2008,

2011b]

Nile grass rat [Ashkenazy-Frolinge

et al., 2010]

CLOCK [Roybal et al., 2007; Mukherjee

et al., 2010; Arey et al., 2013]

Flinders Sensitive Line (FSL) rats

[Malkesman and Weller, 2009]

CTNNB1 [Gould et al., 2008] Wistar Kyoto (WKY) rats [Will

et al., 2003; Malkesman and

Weller, 2009]

POLG [Kasahara et al., 2006; Kubota

et al., 2010]

Madison (MSN) [Saul et al., 2012]

HINT1 [Barbier and Wang, 2009]

GRIN2A [Taniguchi et al., 2009]

WFS1 [Kato et al., 2008]

DAT [van Enkhuizen et al., 2012;

Young et al., 2010b]

ERK1 [Engel et al., 2009]

GRIK2 [Shaltiel et al., 2008;

Malkesman et al., 2010]

DGKB [Kakefuda et al., 2010]

ATP1A3 [Kirshenbaum et al., 2012]

FBXL3 [Keers et al., 2012]

BI-1 [Hunsberger et al., 2011]

CACNA1C [Dao et al., 2010]

ANK3 [Leussis et al., 2012]
The most widespread pharmacological model to date involves

use of stimulants (amphetamines, methamphetamine) to mimic

the manic phase of bipolar disorder [Niculescu et al., 2000]. With-

drawal from the stimulant can also mimic the depressive phase of

the disorder. Sometimes, an anxiolytic agent is added, on the

premise that mitigating the anxiogenic side-effects of stimulants

leads to modeling of euphoric mania [Kelly et al., 2009]. However,

that approach is questionable, as human bipolar patients natural-

istically often display co-morbid anxiety and/or irritability as part

of their bipolar clinical picture.

Amore systematic pharmacogenomic approach used a compar-

ison of the gene expression effects of a disease-mimicking stimulant

(methamphetamine) and a disease-treating mood stabilizing agent

(valproate) [Ogden et al., 2004], as a way of prioritizing genes that

are affected by both treatments, especially the genes that are

changed in opposite directions by the disease agonist and the

disease antagonist. Moreover, gene expression effects weremapped

in key disease-relevant brain regions, not in thewhole brain [Ogden

et al., 2004]. That work was subsequently extended to look at the

gene expression changes in blood from the animals on the different

treatments, as a way of identifying brain–blood biomarkers

[Le-Niculescu et al., 2009b].
isorder: Recent and/or Key Studies

s Pharmacological models

Other environmental

manipulations

r Methamphetamine [Niculescu

et al., 2000; Macedo

et al., 2013]

Learned helplessness

[Mingmalairak et al., 2010]

Methamphetamine/valproate

[Ogden et al., 2004]

Isolation housing [Le-Niculescu

et al., 2008; Niwa

et al., 2013]

Amphetamine-chlordiazepoxide

[Kelly et al., 2009]

Forced swim test [Le-Niculescu

et al., 2008]

Lithium [Gould et al., 2007;

Johnson et al., 2009;

Kovacsics and Gould, 2010]

Tail suspension test

[Le-Niculescu et al., 2008]

Other mood stabilizers:

Lamotrigene [Li et al.,

2010], Topiramate [Bourin

et al., 2009]

Restraint stress [Johnson

et al., 2009; Koo

et al., 2010]

Ouabain [Herman et al., 2007] Shock-induced aggression

[Kovacsics and Gould, 2010]

GBR12909 [Young

et al., 2010a]
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Only one genetic model to date, the DBP (D-box binding

protein) knock-out mouse, has been shown to mimic both phases

of the illness, using clinically relevant environmentalmanipulations

[Le-Niculescu et al., 2008]. DBP is a circadian clock gene candidate

for bipolar disorder, that was identified in earlier gene expression

studies [Niculescu et al., 2000] in pharmacogenomic models and

maps to a locus implicated in bipolar disorder in humans. At

baseline, the knock-out animals are depressed compared to wild-

type controls. During exposure to chronic stress (isolation housing)

and acute stress (experimental handling), the mice exhibit a switch

in phenotype to a manic-like phase, characterized by increased

activity and increased hedonic behavior. This two hit paradigm

(genetic vulnerability, followed by environmental stressors)

mimics very well the human condition. The fact that a single

gene constitutive knock-out has such a broad phenotype exceeded

apriori expectations. It may be due in part to the fact that the gene

knocked-out is a transcription factor, responsible for setting in

motion a cascade of other changes, and also due to the fact that it

is a circadian clock gene, which are emerging as key molecular

underpinnings of mood disorders. Comprehensive gene expression

studies in brain andblood,with andwithout exposure to stress,were

carried out in this animal model, generating additional candidate

genes and blood biomarkers for bipolar disorder [Le-Niculescu

et al., 2008]. Treatment studies in this model using omega-3 fatty

acids led to a normalization of the phenotype [Le-Niculescu et al.,

2011b].

Another genetic model, a knock-out of the circadian clock gene

CLOCK, has been originally described to have a phenotype that

mimics only themanic side of the illness [Roybal et al., 2007].More

recent work with it involving brain region-specificmanipulation of

gene expression has revealed amixedmood phenotype [Mukherjee

et al., 2010].Other recentlydescribedgenetically engineeredmodels

for manic-like behavior involve manipulation of the genes DAT

(dopamine transporter) [Young et al., 2010b], GRIN2A (NMDA

receptor subunit 2A) [Taniguchi et al., 2009], HINT1 (protein

kinase C interacting protein) [Barbier and Wang, 2009], ERK1

(extracellular signal regulated kinase 1) [Engel et al., 2009], and

GRIK2 (metabotropic glutamate receptor 6) [Shaltiel et al., 2008;

Malkesman et al., 2010]. Candidates emerging from genome-wide

association studies of bipolar disorder (CACNA1C [Dao et al.,

2010], ANK3 [Leussis et al., 2012]) were also validated in animal

models.

An interesting model, supportive of a role for mitochondrial

involvement in bipolar disorder, is that of POLG1 (mitochondrial

DNA polymerase) transgenic mice, where mutant POLG1 is

expressed in a neuron-specificmanner. Thesemice exhibit periodic

activity changes and altered circadian rhythm, similar to bipolar

cycling [Kasahara et al., 2006]. Subsequent studies comparing gene

expression changes in these mutant mice to human postmortem

brain gene expression changes in bipolar subjects identified two

overlapping genes [Kubota et al., 2010]. One of them, SFPQ

(splicing factor proline/glutamine rich), is also a top candidate

gene for bipolar disorder from theDBPKOmousemodel described

above, where it is increased in expression in the amygdala the

activated (manic) phase. The second gene, PPIF, encodes cyclo-

philinD, a componentof themitochondrial permeability transition

pore. A blood–brain barrier permeable cyclophilin D inhibitor
improved the abnormal behavior of the POLG1 mice, suggesting

a potential lead for new drug discovery efforts.

An area of emerging interest is that of small regulatoryRNAs. It is

possible that broad disease-relevant phenotypesmay be obtained in

mice in the future by manipulating microRNAs, which, similar to

transcription factors like DBP, regulate many other genes [Miller

et al., 2012].

Human Genetic Studies
Over the last few years, in concert with other fields, genetic studies

for bipolar disorder have been dominated by genome-wide associ-

ation studies (GWAS) [Wellcome Trust Case Control Consortium

2007; Baum et al., 2008; Sklar et al., 2008; Scott et al., 2009; Smith

et al., 2009; Soronen et al., 2010], and to a lesser extent copy-number

variants (CNV) studies [Lachman et al., 2007; Zhang et al., 2009],

and more recently, whole-genome sequencing studies [Kiezun

et al., 2012]. GWAS studies to date have identified few polymor-

phisms that meet the genome-wide statistical threshold for. Those

few findings in turn are not reproduced as statistically significant in

independent GWAS, although some show additional evidence in

meta-analyses [Ferreira et al., 2008; Schulze et al., 2009; Liu

et al., 2011; Williams et al., 2011; Green et al., 2012], especially

when samples from different psychiatric disorders are combined,

leading one to suspect those gene variants have to do with basic

brain and body functions shared across disorders [Steinberg

et al., 2012; Smoller et al., 2013]. Consistent with that view, the

findings tend to be in obscure, housekeeping-type genes (ANK3,

CACNA1C,ODZ4), in contrast to themore biologically interesting

genes implicated by gene expression studies in animal models

and in human postmortem brain from subjects with bipolar and

related disorders. A discussion of the reasons for this limited

success of GWAS has been ongoing in the field [Niculescu and

Le-Niculescu, 2010b], but an emerging explanation is that

genetic heterogeneity at the SNP level is a contributory factor.

As such, gene-level analyses aremuchmore likely tobe reproducible

[Ayalew et al., 2012]. In addition, gene-level analyses permit

cross-platforms, cross-methodologies, and cross-species integra-

tion [Le-Niculescu et al., 2009a; Patel et al., 2010], particularly

with animal models and gene expression studies (Fig. 1), which

can help with identification and prioritization of disease-relevant

genes.
Human Gene Expression Studies
Gene expression data may be the Rosetta Stone helping to tie

together and unravel epistasis (co-acting gene expression

(CAGE) [Niculescu et al., 2000], “genes that change together

work together”), as well as regulatory networks of non-coding

SNPs [Dunham et al., 2012], epigenetic changes, chromatin mod-

ifications, non-coding RNAs, and transcription factors responsive

to environmental stimuli. Human gene expression studies have

been carried out in postmortem human brains tissue [Banigan

et al., 2013], as well as in peripheral blood [Le-Niculescu et al.,

2009b], fibroblasts [Yang et al., 2009], olfactory epithelium-derived

neurons [Tajinda et al., 2010], and more recently in induced

pluripotent stem cells (iPSC)-derived neurons [Lin et al., 2011;
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Brennand et al., 2011]. Each particular approach has strengths and

limitations.
Integration
The integration of animal model and human studies has occurred

either as hypothesis-driven validation, or as discovery-driven

convergent integration of datasets.

The first approach takes a finding from one line of work, and

studies it in the other. For example, genetically engineered mice of

human candidate genes for mood disorders have been generated

(DBP, CLOCK, ANK3, CANA1C, and others), as described above,

and are proving to be useful animal models for the disorder.

Conversely, a gene expression finding from animal model studies

is pursued in candidate gene association studies in human

populations. One such example from our work is that of RORB

(RAR-related orphan receptor beta), another circadian clock gene.

RORB was identified as changed in expression in the brain of DBP

KOmice [Le-Niculescu et al., 2008]. Itwas then tested and shown to

have genetic association with bipolar disorder in a human

pediatric bipolar population [McGrath et al., 2009]. The rationale

for studying a pediatric bipolar population was that pediatric

bipolar subjects exhibit more rapid cycling and changes in mood

state (switching), which are likely underpinned at a molecular level

by circadian clock genes.

The second approach, the discovery-based integration of animal

model and human data, has had itsmost systematic embodiment to

date throughConvergent Functional Genomics (CFG) (Fig. 1). The

approach is predicated on using large datasets as well as manually

curated databases of the published literature to date [Bertsch

et al., 2005; Niculescu and Le-Niculescu, 2010a]. Each individual

line of work has strengths and limitations. Animal model data

can provide sensitivity and ability to conduct experimental manip-

ulations not feasible in humans. Human data provides more

specificity and relevance to the human disease. Using a set ofmouse
experiments as a driving force [Ogden et al., 2004; Le-Niculescu

et al., 2008], or using human blood biomarker [Le-Niculescu et al.,

2009b] or GWAS data Le-Niculescu et al., 2009a; Patel et al., 2010]

as a driving force, such studies have identified and prioritized

candidate genes and biomarkers for bipolar disorder that show

good reproducibility as well as predictive ability in independent

cohorts [Le-Niculescu et al., 2009b; Kurian et al., 2011; Ayalew

et al., 2012; Patel et al., 2010].

The mining of GWAS data for bipolar disorder with a CFG

approach was particularly successful [Le-Niculescu et al., 2009a;

Patel et al., 2010], and holds generalizable lessons. The integration

of GWAS data had as a first step the selection of SNPs. A nominal

P-value threshold, not a genome-wide significance threshold, was

used to select the positive SNPs from eachGWAS, as it was assumed

that most SNPs make only a small contribution to the disorder at a

population level, and the work relied on the subsequent integration

with other lines of evidence to identify and prioritize true positives.

The second step is the conversion of SNPs into genes. From then on,

all lines of evidence are tabulated at a gene level. The more lines of

evidence, that is, themore times a gene shows up as positive finding

across independent studies, platforms, methodologies and species,

the higher its CFG score (Fig. 1). This is very similar conceptually to

aGoogle PageRank algorithm, inwhich themore links to apage, the

higher it comes up on the search prioritization list. Human and

animalmodel, genetic andgeneexpression, datasetswere integrated

and tabulated. The top candidate genes were then assembled in a

panel composed of their component SNPs, and tested in indepen-

dent cohorts. Each subject in an independent cohort has a genetic

risk prediction score (GRPS) based on howmany of the SNPs in the

panel it was positive for. Using such an approach, a polygenic panel

of 56 top candidate genes for bipolar disorder, mined from GWAS

using CFG, showed good predictive ability to differentiate, in

independent cohorts, between bipolar and controls, as well as

between less severe and more severe forms of bipolar disorder

[Patel et al., 2010]. As an added feature, this approach identified top

candidate genes that have a lot of prior biological evidence and

disease relevance, as opposed to the mundane top findings from

GWAS alone. For example, at the very top of the candidate gene list

for bipolar disorder generated by this mega-analysis is ARNTL

[Patel et al., 2010], another circadian clock gene also recently

implicated in diabetes [Marcheva et al., 2010]. The top candidate

genes for bipolar were then analyzed in terms of distribution in

biological pathways andmechanisms, levels of analysis where there

is less heterogeneity and a clearer picture emerges. The analysis

resulted in the first comprehensive empirically derived model of

bipolar disorder pathophysiology to date [Le-Niculescu et al.,

2009a]. This led to a proposed understanding of mood as related

to cellular and organismal energy, activity, and trophicity, as an

adaptive clock-gene mediated synchronization to a favorable or

hostile environment [Le-Niculescu et al., 2009a; Niculescu et al.,

2010]. Excessive, discordant, or variable reactivity to environmen-

tal stimuli leads to clinical illness (depression in a favorable

environment, mania in a hostile environment, cycling and switch-

ing from one mood state to the other that is not warranted by

adaptation to the environment).

We have also used such a strategy for schizophrenia, with

similar success [Kurian et al., 2011; Ayalew et al., 2012], showing
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reproducibility in four independent cohorts. The polygenic ap-

proach exemplified in our earlier work [Le-Niculescu et al., 2009b;

Kurian et al., 2011; Ayalew et al., 2012; Patel et al., 2010] has now

become widely used, with varying success [Derks et al., 2012]. It

seems clear, asourworkhas also shown, that good results dependon

the strength of the (endo) phenotype [Fanous et al., 2012; Whalley

et al., 2013] and the ability to prioritize genes.
Future Directions
The advances surveyed here occurred over the last decade as a result

of collaborations between investigatorswithdifferent backgrounds,

using different approaches. They have opened the door to a better

understanding of the genetics, biology, diagnosis and ultimately

treatment of bipolar and related mood disorders, paving the way in

the near future for individualized/personalizedmedicine. It is clear

that such convergent strategies should continue to be employed and

refined for bipolar disorder, in other psychiatric disorders, and in

complex medical disorders in general. Psychiatric disorders share

similarity at a genetic level with cancer and diabetes in terms of

complex genetics, and even in terms of some of the molecular

pathways involved [Le-Niculescu et al., 2009b; Marcheva et al.,

2010; Niculescu et al., 2010]. Paradigms from cancer could be

borrowed in psychiatric research, particularly the classification of

genetic variants into risk genes (similar to oncogenes) and protec-

tive genes (similar to tumor-suppressor genes). An early proposal

for such a classification used the terms psychogenes and psychosis-

suppressor genes [Niculescu et al., 2000]. The complexity of these

broad groups of disorders however is such that simple binary

classifications may be insufficient, and only the complete under-

standing of the contextual cumulative combinatorics of common

gene variants, development and environment may yield the ulti-

mate answer [Patel et al., 2010]. Pathway analyses and mechanistic

identification can lead to comprehensive, testablemodels thatmove

the field beyond current nosological classifications [Niculescu

et al., 2010], and lead to better diagnostics and treatments. Person-

alizedmedicine, that is pro-active in building resilience, preventive

for avoiding environmental risk factors, predictive of whom is at

risk and who will respond to treatment, and participatory for the

patient and the family, is the ultimate outcome of our work.
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NOTE ADDED IN PROOF

This article was published online on 31 May 2013. Subsequently, it

was determined that the final version had not been published, and

this was corrected on 19 June 2013. The primary change is found in

References, where citations were expanded to the first ten authors

where applicable.
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