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Abstract

Identifying genes involved in complex neuropsychiatric disorders through classic human genetic approaches has proven diYcult. To
overcome that barrier, we have developed a translational approach called Convergent Functional Genomics (CFG), which cross-matches
animal model microarray gene expression data with human genetic linkage data as well as human postmortem brain data and biological
role data, as a Bayesian way of cross-validating Wndings and reducing uncertainty. Our approach produces a short list of high probability
candidate genes out of the hundreds of genes changed in microarray datasets and the hundreds of genes present in a linkage peak chro-
mosomal area. These genes can then be prioritized, pursued, and validated in an individual fashion using: (1) human candidate gene asso-
ciation studies and (2) cell culture and mouse transgenic models. Further bioinformatics analysis of groups of genes identiWed through
CFG leads to insights into pathways and mechanisms that may be involved in the pathophysiology of the illness studied. This simple but
powerful approach is likely generalizable to other complex, non-neuropsychiatric disorders, for which good animal models, as well as
good human genetic linkage datasets and human target tissue gene expression datasets exist.
  2005 Elsevier Inc. All rights reserved.
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1. Introduction postmortem brains [5,9,10,14,15,18]. Moreover, in animal
Neuropsychiatric disorders such as bipolar disorders
and schizophrenia are complex, polygenic, with variable
penetrance. Moreover, the imprecise phenotypical charac-
terization inherent in current diagnostic classiWcations,
such as DSM-IV and ICD-10, compounds the problem. As
such, identifying candidate genes for them through classic
genetic approaches has proven arduous. Linkage studies
result in relatively broad peaks, on large chromosomal
regions, with hundreds of genes in them [2,3].

The advent of microarray technology has permitted the
non-hypothesis driven comprehensive proWling of gene
expression changes in animal models as well as in human
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models in particular, speciWc aspects of the illnesses (endophe-
notypes) can be modeled by carefully chosen pharmacological
treatments. However, taken by itself, the gene expression pro-
Wling approach suVers from the major caveat that it is unclear
which of the gene expression changes observed are core to the
pathophysiology being studied and which are epiphenomena
and artefacts. This problem is particularly acute for human
postmortem gene expression work [17].

To overcome the shortcomings in both the classic genet-
ics and gene expression proWling approaches, we have
developed a heuristic, translational discovery paradigm
called Convergent Functional Genomics (CFG) [11,15,16].
The CFG paradigm cross-matches comprehensive animal
model microarray gene expression data with human genetic
linkage data, human postmortem gene expression data, and
biological roles data. This Bayesian way of reducing uncer-
tainty produces a short list of high probability candidate
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genes, pathways, and mechanisms for complex genetic
disorders, such as neuropsychiatric disorders [19]. Bayesian
strategies have also been used fruitfully to integrate inde-
pendent datasets and lines of evidence in model organisms,
such as yeast [8,22].

2. CFG methodology

2.1. Internal convergence

2.1.1. Agonist–antagonist animal model pharmacogenomic 
convergence paradigm (Fig. 1)

Signs and symptoms of psychiatric disorders can be
mimicked by the use of street drugs (for example metham-
phetamines for bipolar disorder, PCP for schizophrenia).
Gene expression changes in response to these agonists of
the illness are of interest but may also comprise genes that
have to do with neurotoxicity or other eVects of the drug
that might not be directly germane to the illness modeled.
Gene expression changes in response to antagonists of the
illness drugs that treat the illness (valproate for bipolar, clo-
zapine for schizophrenia) are of interest, but again some of
them may have to do with the side-eVects or toxicities of the
drug rather than with the therapeutic eVects. We reasoned
that the convergence of eVects of both agonist and antago-
nist would identify a limited number of higher probability
candidate genes. Moreover, by also using an agonist–antag-
onist co-treatment paradigm and identifying the genes that
were not changed (“nipped in the bud”) by co-treatment,
we would have an additional powerful cross-validator. The
convergence of changed by agonist, changed by antagonist,
and nipped in the bud by co-treatment can be quite power-
ful and restrictive which makes it particularly useful for big
gene expression datasets [19]. This approach is biased
towards avoiding false positives even at the expense of hav-
ing false negatives. We have termed these higher probability
genes Category I candidate genes. Genes that are changed
by both the agonist and the antagonist but are not nipped
in the bud by co-treatment are termed Category II. Genes
that are changed by either the agonist or the antagonist and
nipped in the bud by co-treatment are Category III. Genes
that are changed by either the agonist or the antagonist and
not nipped in the bud by co-treatment are termed Category
IV (Fig. 1).

The agonist/antagonist paradigm does not necessarily have
to be exclusively pharmacogenomic. At least one arm of it can
be genetic (selected rodent strain, knock-out). Our approach
can also be applied proWtably to non-neuropsychiatric com-
plex disorders, such as asthma and hypertension [4,6].

2.1.2. Changes in multiple target tissue regions
It can be argued that if a gene is changed in multiple tis-

sue regions of interest, it is more likely to be involved in the
pathophysiology of the illness. Moreover, from a technical
standpoint, the chippings from diVerent tissue regions are
independent experiments, which gives a dimension of repli-
cability, always important and reassuring in microarray
work. It is also very important to do the (animal model) bio-
logical experiments multiple times, de novo. In our experi-
ence [19], and that of others in the Weld [12], biological
variability trumps technical variability or method used as the
main factor for non-reproducibility of gene expression data.

2.1.3. Gene expression data gene identiWcation
A National Center for Biotechnology Information

(NCBI) (Bethesda, MD: http://www.ncbi.nlm.nih.gov/)
BLAST analysis of the accession number of each probe-set
can be done to identify genes for which the AVymetrix data-
base does not provide a deWnitive identiWcation/name.
BLAST analysis identiWes the closest known gene existing in
the database for the animal model species used (i.e., the
highest known mouse gene at the top of the BLAST list of
homologues) which then could be used to search the Gene-
Cards database (Weizmann Institute, Rehovot, Israel: http:/
/bioinfo.weizmann.ac.il/cards/index.shtml) to identify the
human homologue. Probe-sets that do not have a known
gene identiWed through this search remain labeled as “EST”
and their accession numbers are kept as identiWers.

2.2. External convergence

2.2.1. Genetic linkage convergence
To designate convergence for a particular gene, the gene

has to map within 10 centiMorgans (cM) of a microsatellite

Fig. 1. Gene expression discovery engine. (A) Agonist–antagonist phar-
macogenomic treatment paradigm; (B) Venn diagram categorizing genes
changed by the various drug treatments and their classiWcation into Cate-
gories I, II, III, and IV.
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marker for which linkage evidence to the (neuropsychiatric)
disorder of interest has been reported in at least one pub-
lished study [15]. The University of Southampton’s
sequence-based integrated map of the human genome (The
Genetic Epidemiological Group, Human Genetics Divi-
sion, School of Medicine, University of Southampton:
http://cedar.genetics.soton.ac.uk/public_html/) is used to
obtain cM locations for both genes and markers. The sex-
averaged cM value is calculated and used to determine con-
vergence to a particular marker. For markers that are not
present in the Southampton database, the MarshWeld data-
base (Center for Medical Genetics, MarshWeld, WI: http://
research.marshWeldclinic.org/genetics/) is used to evaluate
linkage convergence. Further information on speciWc gene
function and biology can be obtained from the Johns Hop-
kins University database, Online Mendelian Inheritance of
Man (http://www.ncbi.nlm.nih.gov/omim/).

The 10 cM distance was chosen initially because the
length of linkage peaks for neuropsychiatric disorders is on
average 20 cM [15]. As with other parameters in our
approach, it can be varied to make the approach more
restrictive (to avoid false positives) or less restrictive (to
avoid false negatives).

2.2.2. Biological and postmortem convergence
Information about our candidate genes is obtained

using GeneCards, as well as database searches using Pub-
Med (http://www.ncbi.nlm.nih.gov/PubMed/) and various
combinations of keywords—gene name, tissue studied
(example: brain), disease (example: bipolar, schizophre-
nia), and postmortem. Postmortem convergence is deemed
to occur for a gene if there are published reports of human
postmortem data showing changes in expression of that
gene or protein product in brains from patients with that
particular disorder. Genes are deemed to have biological
convergence if their known biological function is relevant
to the pathophysiology of the disorder studied, in human
or animal models. Biological association with pharmaco-
logical agents used clinically to treat the disorder are par-
ticularly interesting. The search can be extended to closely
related disorders, as there is often clinical and biological
overlap. This would increase sensitivity but decrease speci-
Wcity. More recently, lymphocyte gene expression proWles
from patients have been published. They can constitute
another line of evidence for convergence, and an interest-
ing line of work for identifying peripheral biomarkers for
neuropsychiatric disorders, where biopsies are not a prac-
tical option [13,21,23].

2.3. Candidate genes, pathways, and mechanisms

2.3.1. Filtering of the data and empirical scoring (Fig. 2)
Each line of evidence has parameters inside (e.g. p value

of change for gene expression data), that can be set at more
stringent or less stringent thresholds, depending if one
desires more speciWcity or more sensitivity (Fig. 2).

Arguments can be made for diVerent ways of weighing
the impact and importance of the multiple internal and
external lines of evidence. If one desires more sensitivity,
then the internal lines of evidence provided by the gene
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Fig. 2. Convergence. Multiple converging independent internal and external lines of evidence for Bayesian cross-validation of Wndings.
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expression datasets should be weighed more heavily. If
one desires more speciWcity, then the external lines of
evidence provided by the human genetic linkage data,
postmortem data or biological roles data should be
weighed more heavily. We have used equal weighing in the
work that we have published so far [19], assigning an
empirical score of 1 to each independent internal and
external line of evidence. With this simple approach, a
pyramid of probability (Fig. 3) can be built for the genes
in the dataset, with the highest probability candidate
genes at the top.

It is very clear that any particular line of evidence in our
approach can have caveats and uncertainties. The power of
the approach derives from the Bayesian integration of mul-
tiple independent lines of evidence. As in a network with
multiple nodes, even if one node becomes questionable or
non-functional, the network overall has resilience and
retains viability for its designed purpose.

2.3.2. Gene ontology analysis
The NetAVx Gene Ontology Mining Tool (AVymetrix,

Santa Clara, CA: http://www.aVymetrix.com/index.aVx) can
be used to categorize the genes in the diVerent datasets into
functional categories, using the Biological Process ontology
branch. A simple hierarchy (gold, silver, and bronze) can be
used to classify the diVerent gene ontology (GO) categories,
based on the number of Category I, II, III, and IV genes
that they have (Fig. 4).

2.3.3. Pathways and mechanisms
The top candidate genes can be organized into networks

of inter-relationships and pathophysiological mechanisms
Fig. 3. Pyramid of top candidate genes for bipol disorder. (A) Probability pyramid generated by the tabulation of independent converging lines of evi-
dence. Plain text—increased by methamphetamine; italics—decreased by methamphetamine; bold—(B) Comparison of diVerent target brain regions in
terms of average number of lines of evidence per candidate gene. (from Ogden et al. [19]).
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by exhaustive manual searches of the literature (PubMed).
While this can be precise and exhaustive, it is impractical,
especially for larger datasets, and commercial packages
such as Ingenuity (Mountain View, CA: http://www.inge-
nuity.com) and others perform similar functions. With con-
tinuous improvements, it is hoped that they can be as
reliable as the manual searches done by an expert, with the
added power of computing and the useful graphical display
interfaces of signaling pathways and networks. One infor-
mative feature of Ingenuity that we have used [19] is identi-
fying which of the candidate genes in your dataset are the
targets of existing drugs. For clinicians, that may provide
an empirical starting point for rational polypharmacy
(combination therapy).

3. Making sense of data

Genes that change together may work together in Co-
Acting Gene Expression (CAGE) groups [11,15]. More-
over, these genes may be in epistasis with one another and
thus provide a way of revisiting human genetic linkage
datasets with empirically derived, testable hypotheses for
epistatic interactions. Linkage peaks that were weak by
themselves may become stronger when tested in conjunc-
tion with other peaks. Conversely, some of the epistatic
interactions may be suppressive of each other. We have
termed this approach of using gene expression data to
unlock the secrets of epistasis EpiExpress.

4. Pursuing leads

Candidate genes can be further validated by studying
the phenotype of transgenic mice in which the gene of
interest is ablated (knock-out, siRNA) [20], or overexpres-
sed. More deWnitive proof consists in demonstrating asso-
ciation of polymorphism in the gene with the illness in
human genetic studies [1,7]. The Wnal nail in the coYn
should be evidence that those polymorphisms have
functional signiWcance.
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